

ABCs of DBS

Where we were and where we are going.

Zachary T. Levine MD FAANS Prof. Neurological Surgery, GWU Director of Neuroscience and Neurosurgery, Holy Cross Health

Disclosures

- Zachary T. Levine MD FAANS
- Clinical Professor of Neurological Surgery, GWU
- Director of Neurosurgery and Neuroscience, Holy Cross Health
- Partner and President of National Capital Neurosurgery
- Speakers Bureau
 - Abbott Labs
 - Medtronic Inc.

History of Movement Disorder Surgery

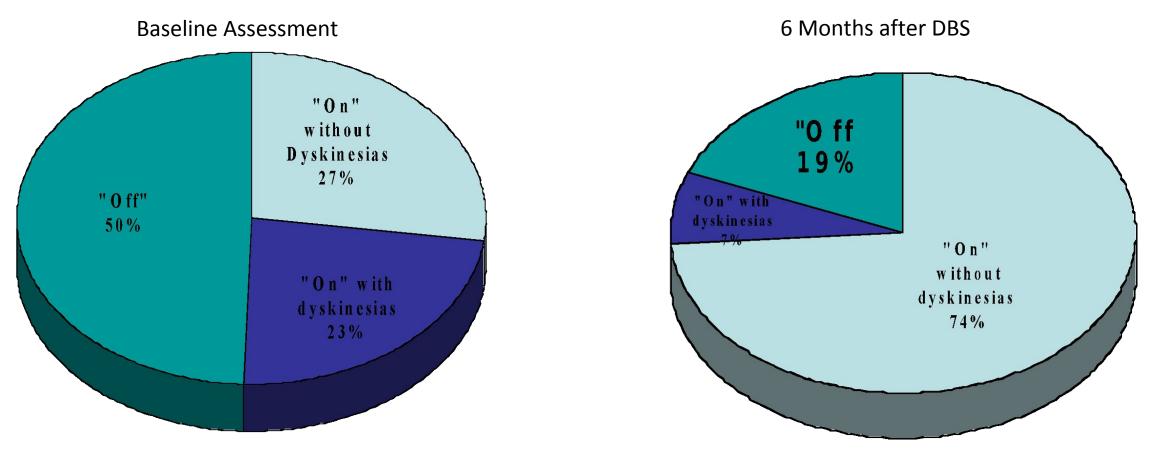
- 1930-1940 "Tractotomy"
 - Severing connections in the brain
- 1940's Stereotactic Pallidotomy and Thalamotomy: Spiegel and Wicis
 - Burning holes in the brain
- 1950's Choroidal Artery Ligation: Cooper
 - Surgical strokes: 10-15% complication rate
- 1970's 90's Resurgence of Pallidotomy: Laitenen
- 1980's to present Neural Transplantation: Madrazo
- 1975- treatment for chronic pain
- 1987's to present for Movement Disorders Benibid
- 1990's Chronic Stimulation
- Current
 - lesioning of the brain using U/S
 - Alternative method of L-Dopa Administration
 - Directional leads to minimize side effect

"That's amazing—I was just thinking the same thing."

Neural Prosthetic

- Electrical stimulation to modulate output from target
- Based on "lesioning" studies
- Mimic lesioning with fewer adverse events
- Symptomatic treatment
 - Tremor
 - Bradykinesia
 - Rigidity
 - Freezing
 - Dystonia
 - Dyskinesia

Neural Prosthetic


- DBS limitations Cannot treat -
 - Cognitive symptoms memory, thinking
 - Gait and balance issues
 - Autonomic symptoms
 - urinary issues
 - blood pressure

Parkinson's Disease

- Death of Dopaminergic Cells in the brain not just the SN
 - Suicide? apoptosis
 - Murder? toxic exposure
 - Both
 - genetic predisposition
 - toxin exposure

Deep Brain Stimulation for PD

NEJM Vol 345 No 13 9/27/2001

DBS v. Best Medical Therapy for PD

- Bilateral Deep Brain Stimulation vs Best Medical Therapy for People with Advanced Parkinson's Disease JAMA 2009; 301(1) 63-73
- 255 Randomized Patients 121 DBS, 134 Best Medical Therapy compared "on time." motor function, QOL, Cognitive function and adverse events
- DBS patients gained an average of 4.6h/d of "on time" vs. 0h/d p<0.001
- 71% improvement of motor function for DBS vs. 32% medical group p<0.001
- 7/8 QOL scores significantly improved with DBS as did the summary of QOL vs. No significant improvement p<0.001
- Cognitive function slightly decreased at the 6month mark with DBS
- More adverse events with DBS p<0.001 (49 adverse events with DBS vs 15)
- Conclusion: Deep Brain stimulation is superior to best medical therapy for people with Parkinson's Disease, in regard to increased "on time", UPDRS scores and Quality of Life self assessment.

DBS Techniques

÷.	Awake v Asleep
alfter	Microelectrode recording
6	Test Stimulation
	Image guided placement
	Frame based
-	Frameless
	Robotic

Awake vs. Asleep

Asleep Implantation

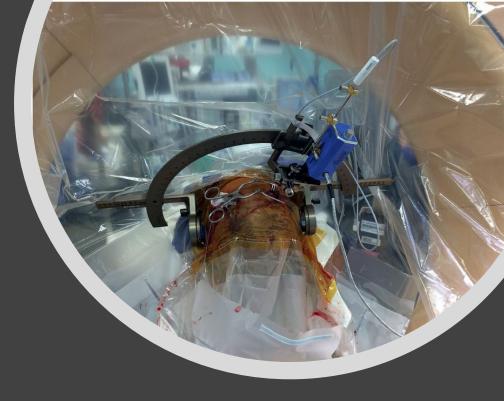
- Image guidance only MRI placement
- Electrophysiologic guidance
- No testing for benefit/side effect

Awake Implantation

- Image guidance Not for MRI placement
- Electrophysiologic guidance
- Testing for benefit/side effect

DBS - Stereotactic Frames

- Frame based surgery
 - Offers submillimeter accuracy
 - Older technique more cases have been done with the frame
 - Requires imaging the day of surgery lengthens the surgery
 - Rigidly affixes the patient to the bed has led to discomfort
 - One frame for all patients some patients are not suitable
 - Frame placement may effect accuracy


DBS - Frameless

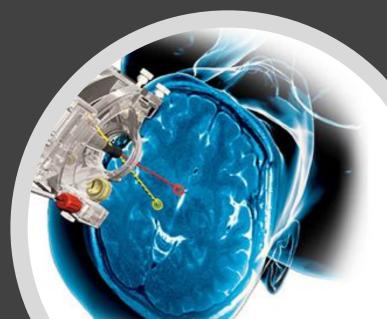
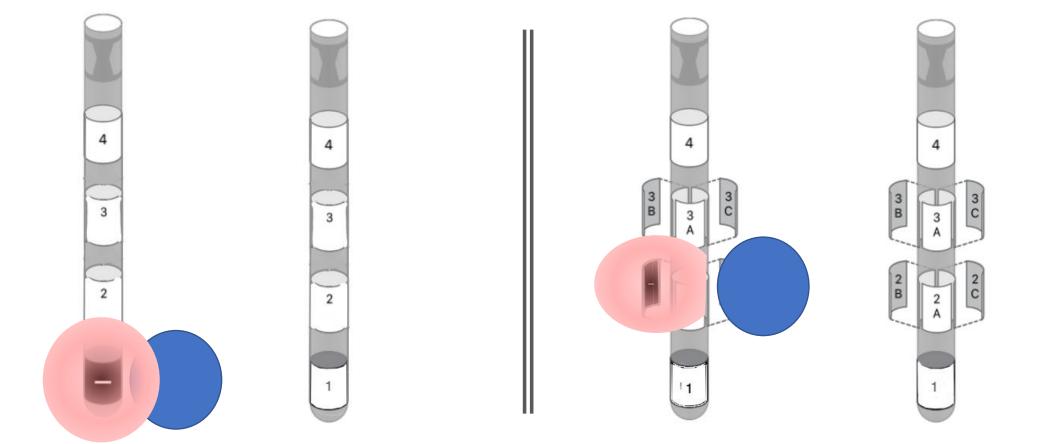

- Frameless Surgery
 - Offers submillimeter accuracy (no different than frame based)
 - Limited number of cases (<50% of current cases)
 - Imaging is all done before the surgery shorter operative time
 - Patient may move on operating table with out sacrificing accuracy
 - No limitations based on patient anatomy or size

Image Guided Surgery

- DBS done in the MRI scanner
 - Cannot do microelectrode recording (MER)
 - Cannot do test stimulation
 - Patient is asleep
- DBS done with CT
 - Fused with MRI for detail and anatomic delineation
 - MER can be done
 - Test stimulation is difficult when patient is asleep

Robots and DBS

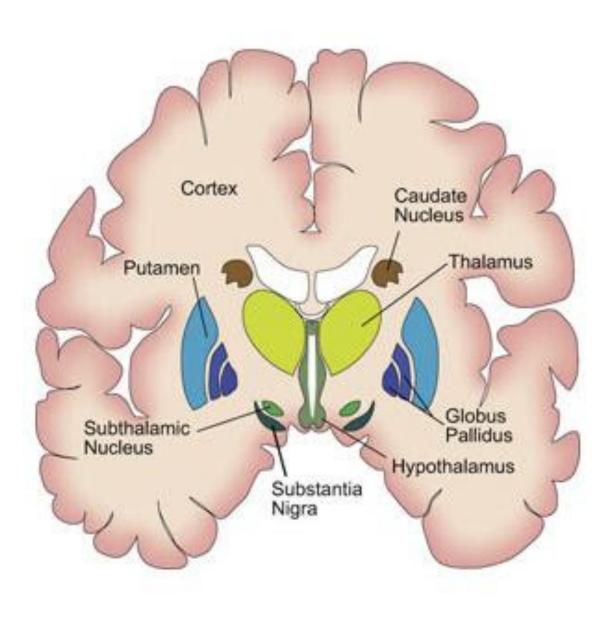

- Pointers
 - Surgeon uses Robot to point
 - Planning is done the same
 - MER possible
 - Test stimulation possible

DBS Technology

Directional Leads

Batteries – Pulse generators

Rechargeable batteries


Primary Cell

- Last longer
- Requires daily recharge
- Recommend if battery drain <2 years
- Will need eventual replacement
 - (15 years)
- No upgrade

- Last no more than 5-6 years
- Very little to no daily maintenance
- Can abruptly loose charge
 - Emergency replacement
- Upgrade with battery changes

DBS Targets

- Subthalamic Nucleus (STN)
- Globus Pallidus, internal segment (GPi)
- Ventral Intermediate nucleus (Vim)

GPi Reasoning

- Significant Dyskinesia with lower doses of L-Dopa (low LED*)
- More gait and postural issues
- Speech preservation important
- Behavioral concerns
 - Depression
 - Aggression
- Maintenance L-dopa dosing
- *Levodopa Equivalent Dosing

STN reasoning

- Reduction of LED
 - Side effect issues
- Advanced PD
- Tremor predominance
- General considered better target
- Dyskinesia not a predominant problem
- Ease of programming
 - Immediate feedback on lead efficacy

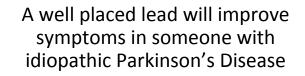
Vim Reasoning

- Medication well tolerated
 - Treating most symptoms
- Tremor Predominant
- Advanced age with disabling tremor
- Less likely to lower LED
- Does not treat bradykinesia or rigidity as well

Surgical Goals in DBS

SAFELY place the DBS lead in a location that mitigates symptoms with minimal or no side effects. Keeping the patient comfortable.

1. Safety


2. Accuracy

3. Benefit

DBS Principles

Symptom improvement does no mean symptom arrest in all patients

Medication reduction is NOT a primary goal for DBS

Improved quality of life IS a primary goal for DBS

